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Abstract

The accelerated life model with time-dependent scale transformation is dealt with. The relative
degradation for the two distribution functions is investigated through some other stochastic orders
which are different from the usual stochastic order. The preservation of some new nonparametric
aging properties under general accelerated life models are studied as well.

1 Introduction

The accelerated life model (ALM) in terms of Cox and Oakes [1] with time-dependent scale transformation
function W (t) claims that

F1(t) = F0(W (t)), (1)

where F0(t) is a continuous distribution function for the lifetime, say X0, of an item functioning in a baseline
(reference) environment. Assume that W (0) = 0, W (t) is monotonically increasing and

lim
t→0

W (t) = 0, lim
t→∞

W (t) = ∞.

Thus F1(t) gives the distribution function of another lifetime, say Y . Assume further that W (t) is continuous
and differentiable in [0,∞), then there should exist w(t) > 0, t ∈ (0,∞), such that

W (t) =
∫ t

0

w(u)du. (2)

For those W (t) ≥ t, equations (1), (2) models the impact of a more severe than baseline environment. In
applications, W (t) is usually assumed to be linear for simplicity:

F1(t) = F0(wt).

This note aims to investigating preservation properties of the increasing convex order and the increasing
concave order under the accelerate model. The preservation properties of both NBUC and NBU(2) are also
derived.

2 Stochastic orders

One convenient manner which can be used to characterize the impact of certain accelerate model is to
conduct stochastic comparison between the random lifetime of the unit operating in baseline environment
and that of the unit operating in a severe environment. It is pointed out in Finkelstein (2001) that X0 is
stochastically smaller than X1 (X0 ≥st X1) if and only if

W (t) ≥ t, for all t ∈ [0,∞), (3)



where the inequality (3) is understood in terms of stochastic ordering:

F̄0(t) ≥ F̄1(t), for all t ∈ [0,∞),

and F̄i(t) = 1− Fi(t) is the reliability functions of Xi, i = 0, 1.
In fact, other stochastic orders involving dispersion can also be used to model the difference between

the original lifetime and that be accelerated. One stronger notion is the dispersive order (Shaked and
Shanthikumar, 1994): X0 is more dispersed than X1 if, for all 0 < u < v < 1,

F−1
1 (v)− F−1

1 (v) ≤ F−1
0 (v)− F−1

0 (v). (4)

The first result investigates the dispersive order between X0 and X1.

Theorem 2.1 If W (t)− t is increasing, then X0 ≥disp X1.

Two of the definitions of the comparative variability in literature are the increasing convex order and the
increasing concave order(Shaked and Shanthikumar, 1998; Müller and Stoyan, 2002).

X0 is larger than X1 in the increasing convex order (X0 ≥icx X1) if, for all x ≥ 0,
∫ ∞

x

F̄0(t)dt ≥
∫ ∞

x

F̄1(t)dt.

In Ross (1996), it is called the variability order and denoted by X0 ≥v X1 there.
X0 is larger than X1 in the increasing concave order (X0 ≥icv X1) if, for all x ≥ 0,

∫ x

0

F̄0(t)dt ≥
∫ x

0

F̄1(t)dt.

Recently, the following two stronger versions of order were proposed because of good application in theory
of reliability and some other related areas.

X0 is larger than X1 in excess wealth order (X0 ≥ew X1) if, for all p ∈ (0, 1),
∫ ∞

F−1
0 (p)

F̄0(t)dt ≥
∫ ∞

F−1
1 (p)

F̄1(t)dt. (5)

where F−1
i (p) is the right continuous inverse function of Fi, i = 0, 1. In Fernadez, Kochar and Singh (1998),

this is called the right spread order and denoted by

X0 ≥RS X1.

Another one was introduced recently by Kochar, Li and Shaked (2002). X0 is larger than X1 in the total
time on test transform order (X0 ≥ttt X1) if, for all p ∈ (0, 1),

∫ F−1
0 (p)

0

F̄0(t)dt ≥
∫ F−1

1 (p)

0

F̄1(t)dt. (6)

According to Shaked and Shanthikumar (1998, 1994), Kochar and Carriér (1997) and Kochar, Li and
Shaked (2002), we have the following chain of implications.

X0 ≥disp X1 =⇒ X0 ≥ew X1 =⇒ X0 ≥icx X1

⇓
X0 ≥st X1 =⇒ X0 ≥ttt X1 =⇒ X0 ≥icv X1.

Our main results in this section study the sufficient conditions which lead to the above stochastic orders
between X0 nd X1.



Theorem 2.2 If W (t)− t is increasing and convex, then X0 ≥ttt X1.

Theorem 2.3 If W (t)− t is increasing and concave, then X0 ≥ew X1.

In consideration that the excess wealth order and the TTT transform order imply the increasing convex
order and the increasing concave order, respectively, we have got the results pointed out by Finkelstein
(2001).

Corollary 2.4 (1) If W (t)− t is increasing and convex, then X0 ≥icx X1.
(2) If W (t)− t is increasing and concave, then X0 ≥icv X1.

3 Non-parametric aging properties

In theory of reliability, non-parametric aging properties are usually used to model the wear-out process of
a random life. For example, IFR, IFRA, NBU and NBUE. In Finkelstein (2001), the inheriting property of
the above four aging properties under the accelerating model is investigated, and the following results are
concluded.

1. Assume W (t) is convex (concave). If X0 is IFR (DFR) then X1 is also IFR (DFR).

2. Assume W (t) is star-shaped (anti-star-shaped). If X0 is IFRA (DFRA) then X1 is also IFRA (DFRA).

3. Assume W (t) is super-additive (sub-additive). If X0 is NBU (NWU) then X1 is also NBU (NWU).

To measure the degree of aging properties, the following partial orders are proposed (Barlow and
Proschan, 1981).

Definition 3.1 (1) If F−1
0 F1(t) is convex, then X1 is said to be more IFR than X0 and denoted by

X0 ≤c X1.
(2) If F−1

0 F1(t) is star-shaped, then X1 is said to be more IFRA than X0 and denoted by X0 ≤∗ X1.
(3) If F−1

0 F1(t) is super-additive, then X1 is said to be more NBU than X0 and denoted by X0 ≤su X1.

Since W (t) = F−1
0 F1(t), the next main result follows immediately.

Theorem 3.2 If W (t) is convex (star-shaped, super-additive), then X0 ≤c X1 (X0 ≤∗ X1, X0 ≤su X1).

Since X0 is IFR (IFRA, NBU) if and only if

Z ≤c X0 (Z ≤∗ X0, Z ≤su X0),

where Z is an exponential random life. By Theorem 3.2, we have

X0 ≤c X1 (X0 ≤∗ X1, X0 ≤su X1).

Now, by transitivity, it holds that

Z ≤c X1 (Z ≤∗ X1, Z ≤su X1),

and hence, X1 is IFR (IFRA, NBU) also. Thus, Theorem 1, 2, 3 in Finkelstein (2001) are special cases of
Theorem 3.2.

Various stochastic orders are utilized to define the NBU properties in literature. For example, X0 is said
to be NBUC (NWUC) (Cao and Wang, 1991) if, for all t ≥ 0 and x ≥ 0,

∫ x

0

F̄0(s)ds ≥ (≤)
∫ x

0

F̄0t(s)ds,



where F̄0t(s) = F̄0(t+s)/F̄0(t) is the residual lifetime of X0 at age t ≥ 0. X0 is said to be NBU(2) (NWU(2))
(Deshpande, Kochar and Singh, 1986) if, for all t ≥ 0 and x ≥ 0,

∫ ∞

x

F̄0(s)ds ≥ (≤)
∫ ∞

x

F̄0t(s)ds.

It is obvious that

IFR =⇒ IFRA =⇒ NBU =⇒ NBUC(NBU(2)) =⇒ NBUE.

As the other two results in this section, the next theorem obtain sufficient conditions for the accelerate
model to inherit the NBUC and NBU(2) properties of the original random life.

Theorem 3.3 (1) If X0 is NBUC and W (t) is increasing and concave, X1 is also NBUC.
(2) If X1 is NBUC and W (t) is increasing and convex, then X0 is also NBUC.

Theorem 3.4 (1) If X0 is NWU(2) and W (t) is increasing and convex, X1 is also NWU(2).
(2) If X1 is NWU(2) and W (t) is increasing and concave, then X0 is also NWU(2).
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